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Abstract. Material dialogues are turn taking games which model de-
bates about the satisfaction of logical formulas. A novel variant played
over first-order structures gives rise to a notion of first-order satisfaction.
We study the induced notion of validity for classical and intuitionistic
first-order logic in the constructive setting of the calculus of inductive
constructions. We prove that such material dialogue semantics for clas-
sical first-order logic admits constructive soundness and completeness
proofs, setting it apart from standard model theoretic semantics of first-
order logic. Furthermore, we prove that completeness with regards to in-
tuitionistic material dialogues fails in constructive and classical settings.
The results concerning classical material dialogues have been mechanized
using the Coq interactive theorem prover.
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1 Introduction

Logical dialogues were introduced by Paul Lorenzen [12, 13], a philosopher and
constructive mathematician active throughout the latter half of the twentieth
century. They are a result of his search for a constructively acceptable account
of mathematics, beginning with his work on operative mathematics [11]. Logical
dialogues are turn-taking games which model a debate in which the proponent
defends the validity of a formula against the criticisms of an opponent. The
games’ moves are modeled after speech acts: asserting formulas and questioning
assertions made by the other player. In this, they differ from the more wide-
spread logical games in the style of Hintikka [8], in which a formula is reduced
to its atoms by both players, the turn order being determined by the syntactical
structure of the formula. Although logical dialogues were initially put forward
as a semantics for intuitionistic logic, they can also capture classical logic [10].

Any dialogue begins with the proponent asserting a formula to be discussed.
The players then take turns, starting with the opponent. The player at turn can
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choose between two possible moves: Either they can attack an assertion made
by the opposing player or they can defend against such an attack, usually by
asserting another formula. Some attacks require the attacking player to assert
a formula while carrying out the attack, in which case the assertion in question
is called an admission. As an example, attacking the asserted formula φ → ψ
requires the attacker to admit φ while attacking. To defend against the attack
on φ → ψ, the attacked player must assert ψ. As in many games, finite plays
are won by the player who made the last move. Infinite plays are always won by
the opponent. To prevent the opponent from winning by stalling indefinitely, for
example through repeated attacks on the proponent’s initial assertion, additional
restrictions are imposed on the opponent’s legal moves. The most common such
restriction is to only allow the opponent to react to the proponent’s previous
move (see Krabbe [9] for alternative restrictions).

While the meaning of logical connectives can be captured by attacks and
defenses allowing the players to break down assertions into subformulas, this
approach does not extend to atomic formulas. There are two different ways of
incorporating atomic formulas in logical dialogues. Material dialogues, the vari-
ant originally proposed by Lorenzen [12, 13], permit attacks on atomic formulas.
To defend against such an attack, the attacked player is required to demonstrate
the validity of the atomic formula. In Lorenzen’s original formulation this meant
deriving a word according to a grammar, a remainder of his operative semantics
of mathematics [11]. Formal dialogues, which were put forward in the disser-
tation of Lorenzen’s student Kuno Lorenz [10], treat atomic formulas without
appealing to their “underlying meaning”, i.e. by purely syntactic means. In this
setting, atomic formulas cannot be attacked by either player and an additional
restriction is imposed on the proponent: They may only assert those atomic
formulas which the opponent has asserted previously. Historically, the study of
logical dialogues after Lorenzen’s and Lorenz’ initial work has been focused on
formal dialogues due to their greater simplicity [9]. Sørensen and Urzyczyn [15]
have demonstrated that the winning strategies of formal dialogues for propo-
sitional logic are structurally similar to sequent calculus derivations, a result
which has been extended to first-order logic in [4].

If one fixes the demonstration method of atomic formulas in a material di-
alogue to be a demonstration of its satisfaction in a previously agreed upon
first-order structure, this induces a model-theoretic notion of satisfaction and,
by quantifying over all models, validity. In this article, we study the arising se-
mantics of first-order logic in the constructive setting of the calculus of inductive
constructions [2, 14]. This extends our previous investigation [4, 5] into the con-
structivity of completeness theorems for various semantics of first-order logic,
including formal dialogues for intuitionistic first-order logic.

1.1 Outline and Contributions

This section summarizes the article’s results. Section 2 covers some basic def-
initions and results we rely on throughout the article. We close with a brief
discussion of various questions arising from this article in Section 5. Note that
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our use of “soundness” and “completeness” may be somewhat unusual. When
speaking of the soundness of a semantics, the intended meaning is the soundness
of some suitable deduction system with regards to said semantics (and similarly
for “completeness”). While non-standard, this terminology allows us to be more
concise about the results derived in this article.

Classical material dialogues In Section 3, we define material dialogues for classi-
cal first-order logic with all connectives. We prove their soundness with regards
to a cut-free, classical sequent calculus. Notably, classical material dialogues are
sound on any first-order structure, whereas classical Tarski semantics require
the underlying structure to satisfy all instances of the law of the excluded mid-
dle (LEM), a property not necessarily held by all structures in a constructive
setting. One could thus say that the “classicality” of classical material dialogues
is within their rules of engagement, not the underlying structures. We further
prove that classical material validity entails exploding classical Tarski validity,
a constructively stricter notion than standard classical Tarski validity. We then
use the constructive completeness of exploding classical Tarski validity to deduce
the same for classical material dialogues. Notably, we obtain completeness for
the full syntax of first-order logic. The only analogous result for Tarski semantics
we are aware of relies on the full LEM [5]. The results of Section 3 have been
mechanized in Coq, the mechanization being located at [17].

Intuitionistic material dialogues In Section 4 we analyze material dialogues for
first-order logic with the usual rules of dialogues of intuitionistic logics. We prove
that standard Tarski validity on the fragment FD given below entails intuitionistic
material validity.

a, b : A ::= ⊥ | P t | a ∧ b | a ∨ b | ∃x.a P : Σ, t : T, x : V

φ,ψ : FD ::= a | φ ∧ ψ | φ ∨ ψ | a→ ψ | ∀x.φ | ∃x.φ x : V

This means that proving completeness with regards to intuitionistic material dia-
logues is tantamount to disproving non-constructive principles on the meta-level.
As such principles are consistent with most constructive theories, completeness
cannot be established without additional axioms. In fact, intuitionistic and clas-
sical material dialogues completely coincide under the full LEM. The standard
rendition of intuitionistic material dialogues is thus ill-suited as a semantics of
intuitionistic first-order logic.

2 Preliminaries

2.1 The Calculus of Inductive Constructions

The results of this article are all derived within the Calculus of Inductive Con-
structions (CIC) [2, 14], the type theory underlying the interactive theorem
prover Coq. The CIC consists of a predicative hierarchy of type universes Ti
above an impredicative universe P of propositions. Each type universe contains
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an empty type, products A×B, sums A+B, function types A→ B, dependent
products Πa : A.B(a) and dependent sums Σa : A.B(a). In P, we denote them
by their respective Curry-Howard correspondents ⊥,∧,∨,→,∀,∃. Allowing un-
restricted elimination from P into the Ti results in an inconsistency [6]. However,
this restriction can be lifted for some types in P, including types of at most one
constructor, such as ⊥ and the equality type = : ΠA.A → A → P with a sole
constructor of type ∀(a : A). a = a.

We use inductive types for the natural numbers (n : N := 0 | S n), option
types (O(A) := ⌜a⌝ | ∅) and list types (l : L(A) := [] | a :: l). We denote list
membership by a ∈ l and the list appending operation by l ++ l′.

2.2 First-Order Predicate Logic

Fix a signature Σ of functions symbols f and predicate symbols P , denoting
their arities by |f | and |P |, respectively. Let V be the countable type of variables
x, y, z : V. The associated term and formula language is defined below.

T ::= x | f t⃗ x : V, f : Σ, t⃗ : T|f |

φ : F ::= ⊥̇ | P t⃗ | φ ∧̇ψ | φ ∨̇ψ | φ →̇ψ | ∀̇x.φ | ∃̇x.φ x : V, P : Σ, t⃗ : T|P |

To aid in the distinction between meta- and object-level syntax, we write small
dots over the connectives of the latter. Negation is defined as ¬̇φ := φ →̇ ⊥̇. Note
that formally, especially within proofs, we are working with de Bruijn binders [1]
instead of the syntax with named binders we present here. More details on de
Bruijn binders are given in Section 2.3. However, for the sake of readability, we
opt to present all definitions and theorems in the main text of this article in the
familiar style of named binders.

A structure S consists of a type X, a predicate interpretation PS : X |P | → P
for each P : Σ, a function interpretation fS : X |f | → X for each f : Σ and an
absurdity interpretation ⊥̇S : P. A model consists of a structure S together with
an assignment ρ : V → X. The term evaluation function tρ in a model S, ρ is
defined as xρ := ρ x and (f t⃗)ρ := fS t⃗ρ. The Tarski satisfaction relation ρ ⊨ φ is
defined below. We often write S for X, e.g. writing s : S instead of s : X.

ρ ⊨ P t⃗ :⇔ PS t⃗ρ ρ ⊨ φ →̇ψ :⇔ ρ ⊨ φ→ ρ ⊨ ψ

ρ ⊨ φ ∧̇ψ :⇔ ρ ⊨ φ ∧ ρ ⊨ ψ ρ ⊨ φ ∨̇ψ :⇔ ρ ⊨ φ ∨ ρ ⊨ ψ
ρ ⊨ ∀̇x.φ :⇔ ∀s : S, ρ[x 7→ s] ⊨ φ ρ ⊨ ∃̇x.φ :⇔ ∃s : S, ρ[x 7→ s] ⊨ φ

ρ ⊨ ⊥̇ :⇔ ⊥̇S

For a finite context Γ we write ρ ⊨ Γ if ρ ⊨ φ for all φ ∈ Γ . A structure S
is classical if for all assignments ρ and formulas φ it satisfies the principle of
double-negation elimination (ρ ⊨ ¬̇ ¬̇φ →̇φ). A structure S is exploding if for all
assignments ρ and formulas φ it satisfies the principle of explosion (ρ ⊨ ⊥̇ →̇φ).
A structure is S standard if ⊥̇S is contradictory (i.e. ¬⊥̇S holds). Observe that
all standard structures are exploding. An entailment between a finite context
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Γ and a formula φ is valid in classical exploding structures, written Γ ⊨E φ,
if for all classical, exploding structures S and all assignments ρ it is the case
that ρ ⊨ Γ entails ρ ⊨ φ. Validity of entailments in classical standard structures,
Γ ⊨S φ, is defined analogously.

Let Γ ⇒ ∆ denote derivability in the cut-free sequent calculus for classi-
cal first-order logic defined below. The system’s presentation is somewhat non-
standard as the principal formulas of derivation rules are not removed from Γ
and ∆. This is convenient when proving soundness as it parallels the require-
ments imposed on the proponent when attacking and defending.

Ax P t⃗ ∈ Γ P t⃗ ∈ ∆
Γ ⇒ ∆

L⊥ ⊥̇ ∈ Γ
Γ ⇒ ∆

L→
φ →̇ψ ∈ Γ Γ ⇒ φ,∆ Γ, ψ ⇒ ∆

Γ ⇒ ∆
R→

φ →̇ψ ∈ ∆ Γ,ψ ⇒ φ,∆

Γ ⇒ ∆

L∧
φ ∧̇ψ ∈ Γ Γ, φ, ψ ⇒ ∆

Γ ⇒ ∆
R∧

φ ∧̇ψ ∈ ∆ Γ ⇒ φ,∆ Γ ⇒ ψ,∆

Γ ⇒ ∆

L∨
φ ∨̇ψ ∈ Γ Γ, φ⇒ ∆ Γ,ψ ⇒ ∆

Γ ⇒ ∆
R∨

φ ∨̇ψ ∈ ∆ Γ ⇒ φ,ψ,∆

Γ ⇒ ∆

L∀
∀̇φ ∈ Γ Γ, φ[t]⇒ ∆

Γ ⇒ ∆
R∀

∀̇φ ∈ ∆ ↑Γ ⇒ φ, ↑∆
Γ ⇒ ∆

L∃
∃̇φ ∈ Γ ↑Γ, φ⇒↑∆

Γ ⇒ ∆
R∃

∃̇φ ∈ ∆ Γ ⇒ φ[t], ∆

Γ ⇒ ∆

The following completeness result stems from [7] based on ideas from [16]:

Theorem 1. In constructive settings, restricting to the ∀̇ , →̇, ⊥̇-fragment of
first-order logic, Γ ⊨E φ entails Γ ⇒ φ.

2.3 De Bruijn binders

De Bruijn binders were developed by de Bruijn as part of the implementation
of the AUTOMATH theorem prover [1]. They provide a formalism for treating
syntax containing binders and substitutions with greater ease than the com-
mon “named binders” approach. Given below is the syntax of first-order logic
using de Bruijn binders. Note especially the absence of variable names after the
quantifiers.

t : T ::= n | c t⃗ n : N, c : Σ

φ : F ::= ⊥̇ | P t⃗ | φ ∧̇ψ | φ ∨̇ψ | φ →̇ψ | ∀̇φ | ∃̇φ P : Σ

In de Bruijn syntax, the variables are represented by natural numbers n : N,
called de Bruijn indexes. Such an index references the quantifier binding it by
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counting the number of quantifiers above it in the syntax tree that need to
be skipped to arrive at the binding quantifier. For an example consider the
formula ∀̇x(P x →̇ ∀̇ z.Qx z) which is represented by ∀̇ (P 0 →̇ ∀̇Q 1 0) in de
Bruijn syntax. Figure 1 depicts the references described by the indexes. Observe
that the variable x is represented by different indexes depending on its position
in the syntax tree.

∀̇ P 0 →̇ ∀̇ Q 1 0

Fig. 1. De Bruijn representation of ∀x.P x → ∀z.Qx z

When working with de Bruijn binders, most definitions involving logical for-
mulas need to be adjusted slightly. For example, assignments become functions
ρ : N → S mapping indexes to elements of the structure. The usual assignment
extension operation ρ[x 7→ s] is replaced by the operation s · ρ which is defined
as below

(s · ρ)(n) :=

{
s n = 0

ρ(m) n = m+ 1

The quantifier rules for Tarski semantics then change appropriately as follows:

ρ ⊨ ∀̇φ :⇔ ∀s : S, s · ρ ⊨ φ ρ ⊨ ∃̇φ :⇔ ∃s : S, s · ρ ⊨ φ

Note that below the quantifier, the indexes of all variables not bound by that
quantifier are incremented thus ensuring that each variable refers to the correct
element in s · ρ.

3 Classical Material Dialogues

We begin by defining formally the material dialogues for classical first-order logic.
Fix a standard structure S the dialogue will be played over. Material dialogues
are a turn taking game between two players. The proponent tries to defend the
satisfaction of some formula in a model, whereas the opponent tries to challenge
the proponent’s claims in such a way that the proponent cannot respond. The
dialogues we consider are so-called E-dialogues which restrict the opponent to
only ever react to the proponent’s previous move. It can be shown that the
notion of satisfaction induced by E-dialogues is equivalent to that of the more
intuitive D-dialogues, in which this restriction is weakened [3, 5].

We model the dialogue game as a state transition system. A triple (ρ,A,C) :
(V → S) × L(F) × L(A) is called a dialogue state. Together S, ρ form the
ambient model. The list A contains all of the opponent’s assertions and C
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records all attacks that the opponent has leveled against the proponent. Each
round begins with the proponent making a move, indicated by a transition
(ρ,A,C) ⇝p (ρ′, A′, C ′);m from a dialogue state to a dialogue state and a
proponent move m : M. This is followed by an opponent move, indicated by
a transition (ρ′, A′, C ′);m⇝o (ρ

′′, A′′, C ′′) from a state and proponent move to
a further state. We continue by defining the two transition relations⇝p and⇝o.

The type D of defenses, defined below, features three different kinds of de-
fenses: DA φ denotes the act admitting of the formula φ, DW φ(x) s denotes
admitting φ(s) where s : S. Lastly, DM φ means claiming to be able to demon-
strate that φ holds. Note that DM φ is only ever instantiated with atomic φ.

D ::= DA φ | DW φ(x) s | DM φ φ : F, s : S

The type A contains all attacks. One writes a▷φ if a : A is an attack on φ. Each
a : A has an associated set Da of defenses against a. Both A and the associated
Da are laid out below.

A⊥ ▷ ⊥̇ DA⊥ = {DM ⊥̇}
AP t⃗▷ P t⃗ DAP t⃗

= {DM P t⃗}
A→ φψ ▷ φ →̇ψ DA→ φψ = {DA ψ}
A∨ φψ ▷ φ ∨̇ψ DA∨ φψ = {DA φ,DA ψ}
AL φ▷ φ ∧̇ψ DAL φ = {DA φ}
AR ψ ▷ φ ∧̇ψ DAR ψ = {DA ψ}

As φ(x)▷ ∀̇x.φ(x) DAs φ(x) = {DW φ(x) s}
A∃ φ(x)▷ ∃̇x.φ(x) DA∃ φ(x) = {DW φ(x) s | s : S}

Some attacks force the attacker to admit a formula. This is formalized by a
function adm : A → O(F) where adm a = ⌜φ⌝ means that φ must be admitted
when attacking with a and adm a = ∅ means no admission need be made. The
admission obligations are adm (A→ φψ) = ⌜φ⌝ and adm a = ∅ for all other
attacks a : A.

Each round begins by the proponent making a move m : M, as detailed
below: Either challenging one of the opponent’s assertions (PAa) or defending
against a challenge previously issued by the opponent, either by asserting a
formula (PDφ) or by demonstrating that an atomic formula holds in the ambient
model (PM φ). The function move : D → M maps defenses to the proponent
move that needs to be made to carry out said defense.

m : M := PAa | PDφ | PM φ

move (DA φ) = PDφ move (DW φ(x) s) = PDφ(x′)

move (DM φ) = PM φ
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The effect of a proponent’s defense d on the game state is defined via a func-
tion dP as below, where x′ denotes a variable which does not occur in A,C, φ(x).

dP (ρ,A,C) =

{
(ρ[x′ 7→ s], A,C) if d = DW φ(x) s

(ρ,A,C) otherwise

Defenses need to be justified by the ambient model. While DA φ and DW φs
are always justified, DM φ requires ρ ⊨ φ to hold. All of the previous notations
enable a compact definition of the state transitions the proponent may induce
by making a move.

PA
φ ∈ A a▷ φ

(ρ,A,C)⇝p (ρ,A,C) ;PAa
PD

c ∈ C d ∈ Dc ρ justifies d
(ρ,A,C)⇝p d

P (ρ,A,C) ;move d

The opponent must react to the proponent’s previous move. If the proponent
defended by asserting a formula, they must issue a new challenge by attack-
ing said assertion (OA). If the proponent attacked one of their assertions, they
can either defend against said attack (OD) or counter the attack, attacking the
admission made by the proponent while attacking (OC). If the proponent demon-
strated the validity of an atomic formula in the ambient model, the opponent
cannot respond at all. The operation dO is defined analogously to dP and is
used to define the transition steps the opponent can induce by making a move.
In a slight abuse of notation, we write c :: A, where c is an attack, for ψ :: A if
adm c = ⌜ψ⌝ and A if adm c = ∅.

dO (ρ,A,C) =


(ρ, φ :: A,C) if d = DA φ

(ρ[x′ 7→ s], φ(x′) :: A,C) if (DW φ(x) s)

(ρ,A,C) if d = DM φ

OA
c▷ φ

(ρ,A,C) ;PDφ⇝o (ρ, ψ :: A, c :: C)

OC
a▷ φ adm a = ⌜ψ⌝ ψ ▷ c

(ρ,A,C) ;PAa⇝o (ρ, c :: A, c :: C)

OD
d ∈ Da ρ justifies d

(ρ,A,C) ;PAa⇝o d
O (ρ,A,C)

A state can be won if the proponent can ensure the play always eventually
ends. This is defined as an inductive predicate which is very similar to the induc-
tive well-foundedness predicate commonly used in type theory. In the common
parlance of game theory, each derivation of Win s constitutes a winning strategy
for the proponent on state s.

s⇝p s
′ ; m ∀s′′. s′ ;m⇝o s

′′ →Win s′′

Win s
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This notion of winnability extends to formulas φ denoted Win (ρ,A,C, φ)
which holds if for all attacks c▷φ it is the case that Win (ρ, c :: A, c :: C). A for-
mula φ is dialogically entailed in a context Γ , written Γ ⊨D φ, if for all standard
structures S and assignments ρ : V→ S it is the case that Win (ρ, Γ, [], φ).

Example 1. Sketched below is a strategy establishing Win (ρ, [P →̇Q,P ], [AQ])
and thus Win (ρ, [P →̇Q,P ], [], Q). The proponent first attacks P →̇Q. In both
branches, the opponent can only continue if an atomic formula is satisfied by
the ambient model. The proponent can thus carry out a “demonstration” (PM)
of said atomic formula, winning the play. This strategy can be played on any
model S, ρ, meaning it suffices to establish P →̇Q,P ⊨D Q.

(ρ, [P →̇Q,P ], [AQ])

(ρ, [P →̇Q,P ], [AQ]) ; PA (A→ P Q)

(ρ, [P →̇Q,P ], [AQ, AP ])

(ρ, [P →̇Q,P ], [AQ, AP ]) ; PAAP

(ρ, [P →̇Q,P ], [AQ, AP ])

(ρ, [P →̇Q,P ], [AQ, AP ]) ; PM P

(ρ, [P →̇Q,P,Q], [AQ])

(ρ, [P →̇Q,P,Q], [AQ]) ; PAAQ

(ρ, [P →̇Q,P,Q], [AQ])

(ρ, [P →̇Q,P,Q], [AQ]) ; PM Q

PA

OC

PA

OD requires ρ ⊨ P

PD relies on ρ ⊨ P

OD

PA

OD requires ρ ⊨ Q

PD relies on ρ ⊨ Q

The definitions of dialogue games given above were in terms of named binders.
When using de Bruijn binders, some definitions require slight adjustments. The
attacks and defenses with witnesses need not include the name of the binding
variable anymore because it is always identified by the index 0.

As φ▷ ∀̇φ DAs φ = {DW φs}
A∃ φ▷ ∃̇x.φ DA∃ φ = {DW φs | s : S}

We denote by ↑φ the operation which increments the index of each free vari-
able occurring in φ, thus freeing the index 0. This operation can be extended
to attacks and lists of attacks or formulas in the obvious way. The de Bruijn
definitions of dP and dO employ this shifting operation to ensure that the index
0 refers to the newly introduced s : S in the case of d = DW φs.

dP (ρ,A,C) =

{
(s · ρ, ↑A, ↑C) if d = DW φs

(ρ,A,C) otherwise

dO (ρ,A,C) =


(ρ, φ :: A,C) if d = DA φ

(s · ρ, φ ::↑A, ↑C) if d = DW φs

(ρ,A,C) if d = DM φ
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We continue by proving the classical material dialogues sound with regards
to the cut-free classical sequent calculus from Section 2.2. This is the easiest
soundness result to obtain because of the structural similarity between winning
strategies for dialogues and cut-free sequent calculus derivations demonstrated
in [15]. Recall also that the proofs in this article work with the de Bruijn syntax.
The results in this section were mechanized in Coq at [17].

The majority of the soundness proof is straightforward. A slight difficulty
arises from the differing treatment of quantifiers by material dialogues and se-
quent calculi. Compare a typical L∀-rule with the state transition caused by the
proponent attacking the admission ∀̇x.φ(x) with Atρ φ(x) and the opponent
responding defending, both given below. While the sequent calculus simply in-
stantiates the formula via a substitution φ[t/x], material dialogues carry out the
instantiation via the assignment ρ.

L∀
∀̇x.φ ∈ Γ Γ, φ[t/x]⇒ ∆

Γ ⇒ ∆
(ρ, Γ, C)⇝po (ρ[x

′ 7→ tρ], φ(x′) :: Γ,C)

To prove soundness, one needs to show that these two methods of instan-
tiation are “essentially the same”. For this, we introduce congruence relations
on different aspects of dialogues: Given assignments ρ, ρ′ and formulas φ,φ′, we
define an equivalence relation ρ, φ ≡ ρ′, φ′ which holds if φ and φ′ are equal
up to term evaluations in the respective assignments. This congruence can be
extended to attacks and defenses and it can be shown that these relations do
indeed “act as congruences” (see the mechanization for details). The following
lemma is crucial to the proof of soundness.

Lemma 1. Let (ρ,A,C) and (ρ′, A′, C ′) be dialogue states such that ρ,A ≡
ρ′, A′ and ρ, C ≡ ρ′, C ′. If Win (ρ,A,C) then Win (ρ′, A′, C ′).

Theorem 2 (Soundness). Let Γ , φ be such that Γ ⇒ φ. Then Γ ⊨D φ.

Proof. For this, it suffices to show that for any standard structure S

Γ ⇒ ∆→ ∀ρ,A,C. (∀δ ∈ ∆.∃c ∈ C. c▷ δ ∧ (∀ψ. adm c = ⌜ψ⌝→ ψ ∈ A))
→ Γ ⊆ A→Win (ρ,A,C)

because it allows one to conclude Win (ρ, c :: Γ, [c]) for any c ▷ φ — and thus
Win (ρ, Γ, [], φ) — from Γ ⇒ φ. The proof proceeds per induction on Γ ⇒ ∆.
Lemma 1 is used in the cases of the quantifier rules. We encourage the curious
reader to consult the mechanization [17].

We continue by proving completeness. We first prove that material validity
entails validity on all classical, exploding models. This is extended to traditional
completeness in Theorem 4 by use of completeness for classical exploding models
on the ∀,→,⊥-fragment (Theorem 1) and a de Morgan translation.

Lemma 2. For any Γ and φ, Γ ⊨D φ entails Γ ⊨E φ.
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Proof. Fix a classical, exploding structure S. We extend Tarski satisfaction to
defenses via ρ ⊨ DA φ :⇔ ρ ⊨ φ and ρ ⊨ DW φs :⇔ s · ρ ⊨ φ and ρ ⊨ DM φ :⇔
ρ ⊨ φ. Furthermore, we define an auxiliary predicate Γ ⊨ρ

∨
D on contexts Γ ,

assignments ρ and sets of defenses D which intuitively states that under the
assignment ρ, Γ entails the disjunction of all semantic interpretations of D:

Γ ⊨ρ
∨
D ⇔ ρ ⊨ Γ → ∀s⃗ : S, α. (∀d ∈ D. ρ ⊨ d→ (s⃗ · ρ) ⊨ α)→ (s⃗ · ρ) ⊨ α

The proof relies on the two intermediate results below, whose proofs are rather
routine. We refer the curious reader to the mechanization [17]. Here, Ŝ denotes
the standard structure with ⊥̇Ŝ = ⊥ which is otherwise exactly the same as S.

(1) Win (ρ, Γ, C) in Ŝ entails Γ ⊨ρ
∨
(
⋃
c∈C Dc) in S

(2) If (c :: Γ ) ⊨ρ
∨
(Dc ∪ D) for all c▷ φ then Γ ⊨ρ

∨
({DA φ} ∪ D) in S

Now assume Γ ⊨D φ and a classical, exploding S, ρ with ρ ⊨ Γ . Per assumption
Win (ρ, Γ, [], φ) in Ŝ meaning (c :: Γ ) ⊨ρ

∨
Dc in S for all c▷ φ by (1) and thus

Γ ⊨ρ
∨
{DAφ} by (2). By picking φ as α we then obtain ρ ⊨ φ in S as desired.

To conclude completeness, we employ a de Morgan translation from the full
syntax of first-order logic into the ∀̇ , →̇, ⊥̇-fragment which is given below:

⊥M := ⊥ (P s⃗)M := P s⃗ (φ ∧ ψ)M := ¬(φM → ¬ψM )

(φ ∨ ψ)M := ¬φM → ψM (∀φ)M := ∀φM (∃φ)M := ¬(∀¬φM )

(φ→ ψ)M := φM → ψM

Furthermore, a dialogical analogue of cut-admissibility is required to derive
completeness on the full syntax. A formula φ can be cut if for any S, ρ, A,A′, C
with Win (ρ,A ++φ :: A′, C) and Win (ρ,A ++A′, C, φ) we also have that
Win (ρ,A++A′, C). The proofs below rely on the congruence principles Lemma 1.
As we believe that spelling out all applications of the principle obscures the sim-
ple ideas behind the proof, we opt to leave applications of Lemma 1 implicit
where possible. Readers interested in the proofs in full detail may take a look at
the Coq mechanization [17]. We prove dialogical cut-admissibility with the help
of a lemma:

Lemma 3. Let φ be such that all formulas of smaller complexity can be cut. Fix
c ▷ φ such that Win (ρ,A,C ++ c :: C ′) and for all d ∈ Dc justified under ρ we
have Win (dO(ρ,A,C ++C ′)). Then Win (ρ,A,C ++C ′).

Proof. We prove a slight generalization: Instead of just c ▷ φ, we consider any
n and c ▷ (↑n φ) such that Win (ρ,A,C ++ c :: C ′) and for all d ∈ Dc justi-
fied under ρ we have Win (dO(ρ,A,C ++C ′)). We then proceed per induction
on Win (ρ,A,C ++ c :: C ′) and begin by performing a case distinction on the
proponent’s move in Win (ρ,A,C ++ c :: C ′).



12 D. Wehr and D. Kirst

PA: The proponent uses a▷ ψ on ψ ∈ A. Then the proponent of Win (ρ,A,C +
+C ′) copies that move. There are two possible opponent responses.
– In the case of adm a = ⌜θ⌝, the opponent may counter with some c′ ▷ θ.

Then the proponent copies the strategy obtained from the inductive
hypothesis upon the same counter.

– The opponent may defend with some d ∈ Da. Then the proponent copies
the strategy obtained for the inductive hypothesis upon the same defense.

PD: Then there is a c′ ∈ C ++ c :: C ′ and the proponent defends with some
d ∈ Dc. There are two cases to distinguish:
c′ ∈ C ++C ′ : Then the proponent of Win (ρ,A,C++C ′) copies the defense.

If d is not DM φ for some φ, then the opponent attacks the formula ψ
admitted by d with some a▷ ψ. The proponent then plays according to
the strategy obtained from the inductive hypothesis upon a▷ ψ.

c′ = c : Per assumption we have Win (dO (ρ,A,C ++C ′)). Then we perform
a case distinction on the form of d.
d = DM φ : Then Win (dO(ρ,A,C ++C ′)) = Win (ρ,A,C ++C ′) and we

are done.
d = DA ψ : The assumption thus is Win (ρ, ψ :: A,C ++C ′). From the

inductive hypothesis we obtain Win (ρ,A,C++C ′, ψ). As DA ψ ∈ Dc
and c▷(↑n φ) we know that ψ is of lower complexity than φ, meaning
it can be cut and we thus obtain Win (ρ,A,C ++C ′).

d = DW ψ s : This case is analogous to that for d = DA ψ with a few
more applications of Lemma 1.

Theorem 3 (Cut-admissibility). All formulas can be cut.

Proof. The proof proceeds per induction on formula complexity. Thus pick a φ
such that all formulas of lower complexity can be cut. We show that

Win (ρ,A++ ↑n φ :: A′, C)→Win (ρ,A++A′, C, ↑n φ)→Win (ρ,A++A′, C)

per induction on Win (ρ,A++ ↑n φ :: A′, C) which subsumes the fact that φ can
be cut. We perform a case distinction on the proponent move.

PAa Then the proponent attacks some ψ ∈ A ++ ↑n φ :: A′ with a ▷ ψ. We
distinguish two cases.
ψ ∈ A++A′ : Then the proponent of Win (ρ,A++A′, C) copies that attack

and proceeds per inductive hypothesis.
ψ =↑n φ : Then Win (ρ,A ++A′, C, ↑n φ) yields Win (ρ,A ++A′, a :: C)

and the inductive hypothesis means that for all d ∈ Da we have that
Win (dO (ρ,A++A′, C)). We may thus apply Lemma 3 to deduce Win (ρ,A+
+A′, C).

PDψ : Then there is some c ∈ C and some d ∈ Dc such that d results in
admitting ψ. The proponent of Win (ρ,A++A′, C) thus copies that admission
and proceeds per inductive hypothesis.

PM φ : Then c ∈ C for the unique a ▷ φ (in either case of φ = ⊥̇ or φ = P t⃗)
and ρ ⊨ φ holds. The proponent of Win (ρ,A++A′, C) can thus win as well
by demonstrating ρ ⊨ φ.
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Combining Theorem 3 with the de Morgan translation above yields com-
pleteness on the full syntax of first-order logic.

Theorem 4 (Completeness). For any Γ and φ, Γ ⊨D φ entails Γ ⇒ φ.

Proof. First of all, Γ ⊨D φ entails ΓM ⊨D φM . This follows from the provability
of φ ↔̇φM , soundness (Theorem 2) and cut-admissibility for material dialogues
(Theorem 3). We can now apply Lemma 2 to obtain ΓM ⊨E φM , which entails
ΓM ⇒ φM by Theorem 1. It is well known that this entails Γ ⇒ φ.

Observe that Theorem 4 was obtained fully constructively. This is noteworthy
because similar results often make use of unconstructive principles. For example,
the only method of extending completeness from the ∀̇ , →̇, ⊥̇-fragment to the
full syntax for classical, standard Tarski models we know of uses LEM [5]. This
should be taken as an indication that material dialogues are exceptionally well-
suited as a semantics for classical first-order logic in a constructive setting.

4 Intuitionistic Material Dialogues

One of the striking features of dialogue games is that classical dialogue semantics
can often be transformed into intuitionistic dialogue games by a simple change
in the rules governing the interactions between proponent and opponent [10,
9]: The proponent may only ever defend against the opponent’s most recent
attack. This is analogous to the restriction to at most one right-hand formula
for obtaining intuitionistic sequent calculi. The adjusted version of the proponent
move transition relation ⇝p for the arising intuitionistic material dialogues is
given below. Note that in this section, in a slight abuse of notation, Win (ρ,A,C)
and Γ ⊨D φ refer to dialogues played according to these intuitionistic rules.
Further note that the rule PA remains unchanged when compared to classical
material dialogues.

PA
φ ∈ A a▷ φ

(ρ,A,C)⇝p (ρ,A,C) ;PAa

PD
d ∈ Dc ρ justifies d

(ρ,A, c :: C)⇝p d
P (ρ,A, c :: C) ;move d

This version of intuitionistic material dialogues does not admit a constructive
completeness proof. To demonstrate this, we define the following fragment of
first-order logic:

a, b : A ::= ⊥ | P t⃗ | a ∧̇ b | a ∨̇ b | ∃̇x.a P : Σ, t⃗ : T|P |

φ,ψ : FD ::= a | φ ∧̇ψ | φ ∨̇ψ | a →̇ψ | ∀̇x.φ | ∃̇x.φ

A is the fragment of first-order logic which allows attacking “blindly”, i.e. the
same attack pattern can be used on these formulas in every winning strategy.
The fragment A does not include a →̇ b as attacking it requires being able to
defend a and ∀̇x.a as attacking it requires a (finite) choice of s : S. Unless
specified otherwise, we are working in a fixed standard structure S.
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Lemma 4. For any a : A and any ρ,A,C with a ∈ A one may assume ρ ⊨ a to
deduce Win (ρ,A,C), i.e. (ρ ⊨ a→Win (ρ,A,C))→Win (ρ,A,C).

Proof. Per induction on the structure of a. Suppose ρ ⊨ a entails Win (ρ, a ::
A,C) we show Win (ρ, a :: A,C). Where appropriate, we implicitly make use of
the fact that Win (ρ,A,C) entails Win (s⃗ · ρ,A′, ↑n C) where s⃗ : S, |s⃗| = n and
↑n A ⊆ A′.

a = P t⃗ : Then the proponent attacks P t⃗, forcing the opponent to demonstrate
ρ ⊨ P t⃗. The proponent may then continue according to the assumption.

a = ⊥̇ : The proponent attacks ⊥̇ and wins.
a = a ∧̇ b : The proponent starts by attacking a ∧̇ b with AL and AR, leaving us

to prove that Win (ρ, a :: b :: A,C). Applying the IH for a and b means we
may assume ρ ⊨ a and ρ ⊨ b to prove Win (ρ, a :: b :: A,C). As we thus know
ρ ⊨ a ∧̇ b the proponent can proceed per assumption.

a = a ∨̇ b : The proponent attacks a ∨̇ b, leaving Win (ρ, c :: a ∨ c :: A,C) for
c ∈ {a, b}. Applying the IH for c allows us to assume ρ ⊨ c, meaning the
proponent can continue per assumption in either case.

a = ∃̇ a : The proponent attacks ∃̇ a, leaving Win (s · ρ, a ::↑( ∃̇ a :: A), ↑C). Per
IH on a we may assume s·ρ ⊨ a and thus ρ ⊨ ∃̇ a, continuing per assumption.

Theorem 5. Pick φ : FD, then ρ ⊨ φ entails Win (ρ,A,C, φ) for any A and C.

Proof. Proof per induction on φ.

φ : A : We only handle φ = P t⃗ and φ = ⊥̇ as the other cases are subsumed
by other cases of this proof. If ρ ⊨ ⊥̇ we are done. If φ = P t⃗ then the only
possible challenge is AP t⃗ to which the proponent responds by demonstrating
ρ ⊨ P t⃗.

φ = φ ∧̇ψ : Then we know ρ ⊨ φ and ρ ⊨ ψ. The possible challenges are AL
and AR, defending against which leaves Win (ρ,A,AX :: C, θ) for some θ ∈
{φ,ψ}. Either case holds per IH for θ.

φ = φ ∨̇ψ : Then we know ρ ⊨ θ for θ ∈ {φ,ψ}. The proponent thus defends
against A∨ by admitting θ and proceeds per IH for θ.

φ = a →̇ψ : Then we know ρ ⊨ a entails ρ ⊨ ψ. In attacking, the opponent will
admit a, leaving Win (ρ, a :: A,A→ aψ :: C). We apply Lemma 4, allowing
us to assume ρ ⊨ a to prove Win (ρ, a :: A,A→ aψ :: C). The proponent thus
defends by admitting ψ and proceeds per IH on ψ as ρ ⊨ ψ per assumption.

φ = ∀̇φ : We know that s · ρ ⊨ φ for any s : S. The challenge will be As φ for
some s : S. The proponent reacts by admitting φ(s), proceeding per IH.

φ = ∃̇φ : Then s · ρ ⊨ φ for some s : S. The only possible challenge is A∃ φ
to which the proponent responds by admitting φ with s as the witness,
proceeding per IH.

Theorem 5 can be made sense of in the following way: It is known that
CIC is consistent with various non-intuitionistic intermediate logics whose axiom
schemes lie partially in FD, e.g. classical logic (a ∨̇ ¬̇ a) and Gödel-Dummett logic
LC ((a →̇ b) ∨̇ (b →̇ a)) for a, b : A. By Theorem 5, it is thus consistent with CIC
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that these parts of the axiom schemes are dialogically valid according to the
rules investigated in this section. However, this means that completeness of these
dialogues wrt. to some intuitionistic deduction system cannot be proven: If it
could, that would mean it was consistent that parts of these non-intuitionistic
axiom schemata, e.g. P ∨̇ ¬̇P , were provable intuitionistically, which we know
not to be the case.

Under the full law of the excluded middle, one can obtain an even stronger re-
sult: intuitionistic and classical dialogical validity, as defined here, fully coincide.
This result relies on the following lemma:

Lemma 5. Assuming LEM, the following holds for any φ in any standard S

1. ∀ρ,A,C. φ ∈ A→ ρ ⊨ ¬̇φ→Win (ρ,A,C)
2. ∀ρ,A,C. ρ ⊨ φ→Win (ρ,A,C, φ)

Proof. We show prove both claims per simultaneous induction on φ. For most
cases, 2. is the same as in Theorem 5 in which case we omit it. We write IHi for
the inductive hypothesis for part i of Lemma 5.

φ = P t⃗ : 1. The proponent may force the opponent to demonstrate ρ ⊨ P t⃗ by
attacking P t⃗ ∈ A, contradicting ρ ⊨ ¬P t⃗.

φ = ⊥̇ : 1. The proponent may win by attacking ⊥̇ ∈ A.
φ = φ →̇ψ :

1. Suppose ρ ⊨ ¬̇ (φ →̇ψ), meaning ρ ⊨ φ and ρ ⊨ ¬̇ψ. The proponent then
attacks φ →̇ψ ∈ A. If the opponent counters the attack, the proponent
can win by playing the strategy obtained by IH2 on ρ ⊨ φ. If the opponent
admits ψ, then the proponent plays according to IH1 on ρ ⊨ ¬̇ψ.

2. Suppose ρ ⊨ φ →̇ψ. The opponent attacks φ →̇ψ with A→ φψ, admit-
ting φ. By the law of the excluded middle, either ρ ⊨ φ or ρ ⊨ ¬̇φ. In
the latter case, the proponent can now proceed per IH2 on ρ ⊨ ¬̇φ. In
the former case we have ρ ⊨ ψ per assumption and the proponent can
proceed by admitting ψ and playing along IH1 on ρ ⊨ ψ.

φ = φ ∧̇ψ : 1. Suppose ρ ⊨ ¬̇ (φ ∧̇ψ), meaning ρ ⊨ ¬̇φ or ρ ⊨ ¬̇ψ. The pro-
ponent attacks the side of the contradicted formula of φ ∧̇ψ ∈ A and
proceeds per IH1.

φ = φ ∨̇ψ : 1. Suppose ρ ⊨ ¬̇ (φ ∨̇ψ), meaning ρ ⊨ ¬̇φ and ρ ⊨ ¬̇ψ. By attack-
ing φ ∨̇ψ ∈ A, the proponent thus forces the opponent to admit either
clause, being able to proceed via IH1 in either case.

φ = ∀̇φ : If ρ ⊨ ¬̇ ∀̇φ that means there is an s : S with s·ρ ⊨ ¬̇φ. The proponent
thus attack ∀̇φ with As φ and proceeds per IH1.

φ = ∃̇φ : Suppose ρ ⊨ ¬̇ ∃̇φ, meaning s · ρ ⊨ ¬̇φ for any s : S. Then the
proponent attacks ∃̇φ ∈ A and proceeds per IH1.

Theorem 6. Under LEM, classical and intuitionistic dialogical validity agree.

Proof.

←: This is the case — even without the law of excluded middle — as every
intuitionistic winning strategy is also a classical winning strategy on the
same state.
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→: Suppose Γ ⊨D φ classically. By Lemma 2 this means Γ ⊨E φ. As every stan-
dard structure is exploding and under the LEM every structure is classical,
this means φ is valid under Γ in every standard structure. By Lemma 5 this
entails that Γ ⊨D φ intuitionistically.

Note that the failure of completeness is not simply due to the “wrong choice
of rules” for intuitionistic dialogues. While there are examples of the proponent
restriction failing to turn classical dialogues intuitionistic (see e.g. [18]) we do not
believe this to be the case in this instance. Formal dialogues for intuitionistic
first-order logic, which are obtained from their classical counterparts via that
very restriction, are constructively sound and complete [3, 4]. Rather, we believe
the cause of failure lies in the difference between formal and material dialogues:
their treatment of atomic formulas.

5 Discussion

Mechanization of active research While researching for this article, we mech-
anized the results from Section 3 in the interactive theorem prover Coq. The
mechanization can be found at [17]. Mechanizing the results of Section 3 revealed
some mistakes in our initial definition of the rules for material dialogues which,
albeit being minor, invalidated both soundness and completeness. We missed
these mistakes while working “on paper” and believe it would have taken much
longer to discover them without the mechanization. Having machine checked
the definitions in Section 3 gave us sufficient confidence in the correctness of the
technical details of material dialogues to work solely on paper for the remainder
of the article. It should also be noted that the mechanization took up only about
a quarter of the overall time spent researching, in large part due to building on
top of the a large preexisting mechanization from [5]. We believe this might be
a worthwhile trade-off between the time requirement of a full mechanization of
all results and the room for error in working solely on paper.

Proof strategies for Completeness We prove completeness by relating dialogical
validity to validity in a model-theoretic semantics and appealing to a preexist-
ing completeness result. This is the quickest way to obtain completeness in the
framework set up by [5]. For classical material dialogues, we believe it would
also be possible to obtain a direct constructive completeness proof with regards
to natural deduction on the basis of a Henkin construction.

Benefits of Material Dialogues When working with Tarski semantics in CIC,
one’s attention needs to be restricted to classical structures (as define in Sec-
tion 2). Many structures of interest such as the standard model of Peano arith-
metic is not provably classical in constructive settings and can thus not be
studied in a Tarski setting. In contrast, Section 3 demonstrates that classical
material dialogues embody classical logic regardless of the classicality of the un-
derlying structure. It thus seems like a promising basis on which to carry out
model-theoretic investigations of classical first-order logic in constructive set-
tings. However, we have not yet investigated these possibilities more deeply.
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Faithfulness to Lorenzen’s material dialogues We attempted to be as faithful
to Lorenzen’s definitions from [12, 13] as possible while implementing material
dialogues played over first-order structures. Arguably, this second aspect already
is in conflict with Lorenzen’s ideas as he placed a lot of value in the “underlying
game” for settling atomic propositions to be of a discrete nature, something
completely lost in our formulation. However, all the attacks and defenses for
the connectives of first-order logic are exactly as they are in Lorenzen’s work.
Notably, our usage of a structure defined, standard constant ⊥̇S is very similar to
Lorenzen’s definitions which propose to fix some unwinnable game as a stand-in
for a “demonstration” of ⊥̇.
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