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Dialogues, first introduced by Paul Lorenzen [|1,2]], characterize logical validity in terms
of debates about formulas. If the debate associated with a formula ¢ can always be “won”,
¢ is considered valid. Dialogues take place between two participants, taking turns either
admitting a formula or challenging one of their opponent’s admissions. In Lorenzen’s
original presentation of dialogues, later dubbed “material dialogues”, participants reduced
their opponent’s claims to claims of atomic formulas, which would then be settled in a
previously agreed upon model. This presentation has since fallen out of fashion in favor of
the purely syntactic “formal dialogues” introduced by Lorenzen’s student Kuno Lorenz [3].
Albeit dialogues were originally intended to serve as a semantics for intuitionistic logic, it
was soon discovered that a slight modifications of the rules of engagement gave rise to a
semantics for classical logic as well.

In this project, we give formal renderings of material dialogues for first-order logic
in the state-transition-system style we have employed in prior work with formal dia-
logues [4]. We prove their soundness and completeness to demonstrate their suitability as
semantics of first-order logic. As we work within the Calculus of Inductive Constructions
as captured by the interactive theorem prover Coq, special attention is paid to the con-
structivity of the completeness proofs. In prior work, we have shown that some semantics
lend themselves to fully constructive completeness proofs, while others require various
non-constructive axioms [4,5]. We thus aim to reveal where material dialogues fall within
that spectrum. Although we initially conjectured that material dialogue will not admit
constructive completeness proofs, our analysis reveals the opposite to be the case.

1. Overview

We begin by quickly summarizing the results of the project. Note that we employ non-
standard terminology, speaking of proving a semantics sound or complete when showing



that some deduction system is sound or complete with regards to it. We do this to stress
that we are analyzing the semantics, not the deduction system.

Classical material dialogues 1In Section [3| we formalize classical material dia-
logues for first-order logic. In Section[3.1] we prove them sound with regards to a cut-free,
classical sequent calculus. Interestingly, classical material dialogues are sound on any
first-order structure, whereas classical Tarski semantics require the underlying structure
to satisfy the axioms of classical predicate logic (a property not necessarily held by all
structures in a constructive setting). One could thus say that the “classicality” of classi-
cal material dialogues is within their rules of engagement, not the underlying structures.
In Section [3.2| we prove that classical material validity entails exploding classical Tarski
validity, a constructively stricter notion than standard classical Tarski validity. We then
use the constructive completeness of exploding classical Tarski validity on the V, —, L-
fragment [6]] to deduce the same for classical material dialogues. As a corollary, we deduce
that standard classical Tarski validity entailing classical material validity is equivalent to
the unconstructive Markov’s principle. In Section [3.3| we extend the completeness result
for classical material dialogues to the full syntax of first-order logic via the DeMorgan
translation. For this, we prove a dialogical rendering of cut-elimination.

Intuitionistic material dialogues In Sectionwe analyze intuitionistic mate-
rial dialogues as first put forward by Lorenzen. We prove that standard Tarski validity on
the fragment F° given below entails intuitionistic material validity.
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This means that intuitionistic material dialogues “inherit” parts of the meta-logical set-
ting. This culminates in the fact that under the law of the excluded middle, intuitionistic
and classical material dialogues fully coincide. There thus cannot be a constructive proof
of completeness without additional axioms forcing the CIC to behave truly intuitionis-
tically, making intuitionistic material dialogues ill-suited as a semantics of intuitionistic
first-order logic.

Kripke material dialogues In reaction to the results of Section |4, we propose
an alternative dialogical semantics in Section [5} As classical material dialogues could be
considered “classical dialogues played on Tarski structures”, we consider intuitionistic di-
alogues played on Kripke structures. We demonstrate their suitability by deriving many of
the same results for them as for the classical material dialogues of Section[3] In Section/5.1]
we prove them sound with regards to a cut-free intuitionistic sequent calculus. In Sec-
tion we show that Kripke material validity entails exploding Kripke validity. We use
the constructive completeness of exploding Kripke models for the V, —, L-fragment [7]] to



deduce the same for Kripke material dialogues. Similarly, this means that standard Kripke
validity entailing Kripke material validity is equivalent to the non-constructive Markov’s
principle.

2. Preliminaries

Pick some signature X of n-ary constants c and predicates P. Then we define an associated
term and formula language with DeBruijn [8]] binders.

t:Tu=n|ct n:N,c: X
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A structure S consists of a type X, a predicate interpretation P$ : X — ... - X — P
for each P € %, a constant interpretation S:X > .. >X — Xforeachc € X and
an absurdity interpretation 15. A model M consists of a structure S together with an
assignment p : N — X.

We define the usual term evaluation function t” inside a structure S
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and the Tarski satisfation relation p = ¢
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We call a structure S classical if for all environments p and formulas ¢, ¢ it can be shown
that p E ((¢ — ¥) — @) — ¢. We call a structure S exploding if for all environments
p and formulas ¢ it can be shown that p | L — ¢. We call a structure S standard if
18 is contradictory. Note that all standard structures are exploding. We call a formula ¢
valid in classical exploding models in a context T, written T |:E o, if for all classical,
exploding structures S and all environments p we have that p |= T entails p |= ¢. Validity
in classical standard models, I' ° ¢, is defined analogously.

A Kripke frame consists of a type K and a preorder <: K — K — P on that type. A
Kripke structure consists of a Kripke frame (K, <) and a functor : : K — S from it into
the category of structures. For a k : K we write Sy for 1k and for a s : S we write s* for
1 (k < k’) s where applicable. A Kripke model consists of a Kripke structure, a world k
and an environment in Sg. Given a Kripke model, we define a relation p* I ¢, denoting



that ¢ is forced at a world k under the k-environment p as below
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We call a Kripke structure exploding or standard if all images of i are such. We call a
formula ¢ valid in exploding models in a context T, written T =X ¢, if for all exploding
Kripke structures, all worlds k : K and all k-environments p we have that p* I T entails
p* - ¢. We denote validity in standard models with T' |=KS ¢.

3. Classical Material Dialogues

We begin by giving a formal rendering of classical material dialogues. A material dialogue
always takes place in an ambient model S, p. We write a > ¢ to mean that a is an attack
on ¢. Some attacks force the attacker to also admit a formula. This is formalized through
a function adm : A — O(F) where adma = "¢ means that ¢ needs to be admitted
in the process of attacking with a and adma = () means no admission needs to be made.
Each attack a has an associated set D, called its defenses. There are three different kinds
of defenses: D4 ¢ denotes simply admitting the formula ¢, Dy ¢ s denotes admitting ¢(s)
where s : S. Lastly, Dy Pt means claiming to be able to demonstrate that Pt holds in the
ambient model.

D:=Dy¢|Dwos|DyPt o:Fs:SP:%t:T

Below are the attacks and defenses for first-order logic. We define adm (A, ¢ /) = "¢~
and adm a = ( for all other attacks.

A> L Dy, ={} As ey oY Da, oy ={Day}
Aro> oAy Dao={Dag} AvoyroVy  Da,py={Dap.Day}
ARy o ANy Dagy ={Day} Asp>Veo Da, o = {Dw s}

Az > Daso={Dwes|s:S}  Apt>Pt Dy,7={DuPt}

We formalize classical material dialogues as a turn taking game between two players.
The proponent tries to defend the validity of some formula, whereas the opponent tries
to challenge the proponent’s claims in such a way that they can’t respond. All dialogues
we consider are E-dialogues which restrict the opponent to only ever react to the propo-
nent’s previous move. It can be shown that the notion of validity given by E-dialogues is
equivalent to that of the more intuitive D-dialogues, in which this restriction is lifted [59]].



We model the dialogue game as a state transition system. Pick some structure S. We
call a triple (p,A,C) : (N — S) X L(F) x L(A) a state. Together S, p form the ambient
model. The list A contains all of the opponent’s admissions while C records all attacks
that the opponent has leveled against the proponent.

Each round, the proponent gets to make a move, defending against a challenge previ-
ously issued by the opponent, either by admitting a formula (PD) or by demonstrating that
an atomic formula holds in the ambient model (PM), or challenging one of the opponent’s
admissions (PA). We define a defense’s effect on the game state as a function d” as below:

(Da@)’s=s (Dw ¢s) (p,A,C) = (s - p,TA, 1C) (DmPt)s=s
Here, we use the shifting operation on attacks, defined as follows:
TAL=A, MALY) =AY (AL @) = AL T 1(ArY) = AR ¥
MAvey) =Av To ¥ 1(As @) = As(@[0- Tid]) (A3 ¢) = As(e[0- Tid])
Similarly we define a function mapping each defense to a proponent move
move (Dg ¢) = PD ¢ move (D ¢s) =PD ¢ move (DyPt) = PMPt

Lastly, we say p justifies d is d is not of the shape Dy P or if PS t* holds. These definitions
allow us to give a simple definition of the state transitions a proponent can trigger by
making a move.
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The opponent must react to the proponent’s move. If the proponent defended by admitting
a formula, they must issue a new challenge against that formula (OA). If the proponent at-
tacked one of their admissions, they can either defend against that attack (OD) or counter
the attack, meaning attacking the admission made by the opponent in issuing the attack
(OC). If the proponent demonstrated the validity of an atomic formula in the ambient
model, the opponent cannot respond at all. We define an operation d° analogously to that
for the proponent and use it to define the transition steps the opponent can trigger by
making a move. In a slight abuse of notation, we write ¢ :: A, where c is an attack, for
Y Aifadme ="y " and A if admc = 0.

(Dag) (p,AC)=(p,p : AC) (Dw @s) (p, A,C) = (s, ¢ =TATC) (DyPt)s=s
c> @ ar¢@ adma="yY"7 Y

OA oC
(p,A,C);PD ¢ ~54 (p, ) :: A,c 2 C) (p,A,C);PAa ~, (p,c i Ac:0)

de D, pjustifiesd
(p,AC);PAa ~, d° (p, A )

OD



A state can be won if the proponent can make a move such that all possible states resulting
from an opponent response to that move can be won. We can define this as an inductive
predicate which is very similar in flavor to the usual definition of well-foundedness of a
relation.

s~ps'sm Vs s"im e~y s” — Wins”

Wins

We extend the notion to winning formulas ¢ with Win (p, A, C, ¢) meaning that for all
attacks ¢ > ¢ we have Win (p,c :: A,c :: C). A formula ¢ is valid in a context T', written
T [P ¢, if for all structures S and environments p we have Win (p, A, [], ¢).

3.1. Soundness

We prove that classical material dialogues are sound with regards to the the cut-free clas-
sical sequent calculus LK (given below). Note that this is the easiest soundness result to
obtain as winning strategies of dialogues always carry the “structure” of a cut-free se-
quent calculus, as elegantly demonstrated by [[10]. Proving soundness with regards to a
system with cuts, say a natural deduction system, would thus necessitate giving a proof
of dialogical cut-elimination first.
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Note the difference between the LV rule and the state resulting in the proponent
attacking an admitted universally quantified formula, which correspond to each other
in the soundness proof. The premise of the LV rule, presented as a dialogue state is
(p, p[t] =+ A C) whereas the state resulting from the opponent reacting to an attack on
an admission Vo is (° - p, ¢ =:TA, TC). To prove soundness, we need to show that these two



states are “essentially the same”. For this, we introduce various congruence relations
on different parts of dialogues. Given environments p, p’ and formulas ¢, ¢’, we define
an equivalence relation p,¢ =¢ p’, ¢’ as below. Intuitively, p,¢p =¢ p’, ¢’ means that ¢
and ¢’ are equal up to their terms and the pairs of terms at a certain position within these
formulas are equal under evaluation in the respective environment.

7 =7 pe=rpl e pY=pp Y
pL=rpL p.Pt=¢p' Pt p. oy =¢ p’,o'0y’
vd. (d-p).o =5 (d-p'). ¢’
p:0O¢ =¢ p’,0¢’

We then extend this congruence to attacks p,a =, p’, a’, defenses p,d =4 p’,d’ and show
that these relations do indeed “act as congruences” (see Appendix [A] for details). These
congruences give rise to a lemma that is crucial for the proof of soundness.

Lemma 1 Let (p,A,C) and (p’, A’,C’) be dialogue states such that p, A =y p’ A’ and
p,C =4 p,C". I Win (p, A, C) then Win (p’, A’,C’) as well.

Theorem 2 (Soundness) Let T, ¢ be such that ' = ¢. Then T [P ¢.

Proof For this, it suffices to show that for any structure S we have

I'=A->VpAC.(VdeATceC.cIA (VY. adme="¢" — ¢y € A))
—T CA— Win(p,AC)

As this means that T = ¢ entails Win (p, ¢ :: T, [c]) for any ct> ¢ and thus Win (p, T, [], ¢).
We prove the claim per induction on I' = A and only spell out an exemplary subset of

the cases. For a full proof, the reader may consult the accompanying formalization.

Ax: Then Pt € T and Pt € A. The proponent thus first attacks the admission P t, forcing
the opponent to demonstrate PS . With this, the proponent can now justify the de-
fense against the challenge against Pt € A, leaving the opponent without any way of
responding and thus winning the dialogue.

LL: Then L € I'. Then the proponent can attack L, leaving the opponent without a way
of defending against the attack and thus winning the dialogue.

L—: Then ¢ — ¢ € T and we obtain inductive hypotheses forI' = ¢,A and I,y = A.
The proponent thus attacks the admission ¢ — 1. The opponent has two ways of
responding to this attack:

« If the opponent defends against the attack by admitting ¢/ then the proponent can
win by playing the strategy obtained from the inductive hypothesis on I', iy = A.

« If the opponent counters, attacking the admission ¢ with some challenge ¢ > ¢
then the proponent can win by playing the strategy obtained from the inductive
hypothesis on T' = ¢, A.



R—: Then ¢ — ¢ € A and we have an IH for I', 9 = ¢, A. The proponent thus defends
against the challenge on ¢ — ¥ to which the opponent must respond with a challenge
¢ > 1. The proponent can thus win by playing according to the IH as ¢ has already
been admitted per our assumption.

LV: Then V¢ € I' and we have an IH for T, ¢ [t] = A for some term t. The proponent thus
attacks Vo with A;» ¢ against which the opponent must defend with Dy, ¢ t°. The state
resulting from this is (¢” - p, ¢ =:TA, 1C). However, the IH only yields a winning strategy
for the state (p, ¢[t] :: A, C). We can now apply Lemmaas tP-p, @ TA=f p,o[t] = A
and tP - p,TC =, p,C to transform the winning strategy provided by the IH into the
desired form.

RV: Then V¢ € A and we have an IH for TT' = ¢, TA. The proponent thus defends with
Dy ¢ s for some s : S and the opponent responds with some challenge ¢ > ¢. This
results in the state (s - p,c ::TA, ¢ =TC) for which the IH directly provides a winning
strategy. n

3.2. Completeness

We prove completeness for classical material dialogues. We first show that validity in
classical dialogues entails Tarski validity in classical exploding models. We then use prior
work of Herbelin and Ilik [6] to obtain completeness with regards to the V¥, —, L-fragment
of first-order logic. For this, we extend the Tarski satisfaction relation to defenses.

pEDap = pEe pEDwese (s-p)Ee pEDuPte pEPt
We define an auxiliary predicate on contexts I', environments p and sets of defenses A
F|:p\/A@p|:F—>\7’§:S,oc.(Vd€A.p|:d—>(§-p) Fa)—> (G-p)EFa

As the notation suggests, I' |, \/ A is an impredicative formalization of the claim that
under the environment p, I" entails the disjunction of all semantical interpretations of A.
That the proof of Theorem[4]below will fail for the much simpler definition of 3d € A. p = d
in the cases of the proponent attacking ¢ V ¢ and J¢. We first show a useful lemma before
moving on to the full proof.

Lemma 3 Pick some classical, exploding structure S, environment p, context I, set A and
formula ¢. If for all ¢ > ¢ we have (¢ :: T') |, V(DU A) thenT |, V({Dagp} UA).

Proof We assume (1) Ve > ¢. (¢ = T') |y V(D UA). Toshow I' |5, \/{Da g} UA we
assume (2)Vd € {Dap}UA. p=d — (5-p) Faand p T to deduce (5 - p) = a. The
proof proceeds per case distinction on ¢.

¢ = L : For A, assumption (1) yields I' |5, \/ A which together with (2) proves the claim.



@ = Pt : This follows as (2) and (1) with Ap t are equivalent as p E Dy Pt < p E Pt.

@ =¢ — ¥ : As S is classical, we may apply Peirce’s law and assume (s - p) | —a. Per
(2), it suffices to show p = ¢ — . We thus assume p |= ¢ and apply (1) for A_, ¢ ¢,
yielding (¢ = T) |, V/{Da¥} U A, to deduce p = /. For the case d = D ¢ this is
trivial, thus suppose d € A. By (2), p | d entails (5 - p) | « and thus 15, meaning
p E ¥ as S is exploding.

@ =¢ ANy With (1) for Af ¢ and Ag ¢ together with (2) we can deduce (s-p) EaVv T" ¢
and (s-p) F aVv 1" ¢ wheren = [s|. If (5 - p) |F @ we are done. If (5 - p) FT" ¢ and
(s- p) ET™ ¢ this means p = ¢ A ¢ and thus (5 - p) = a by (2).

@ =@ VY Applying (1) for Ay ¢ ¢ together with (2) directly yields the claim.

¢ = V¢ : This case proceeds analogous to that of ¢ — i/: Suppose (5- p) | —a via Peirce’s
law, apply (2), leaving s’ - p |= ¢ to be proven and apply (1) with Ay ¢ to achieve this.

@ = J¢ : This case proceeds analogous to that of ¢ A : Apply (1) with A3 ¢ to deduce
(s-p) Eav 1" (J¢) and close using (2). -

Note that the ability to extend the context in I' |5, A is used in the V¢ case of the proof
above. Indeed, this is the only where we make use of it overall.

Theorem 4 Let S be classical and exploding and (p, A, C) a state. If Win (p, A, C) then
A, V Dc where De = e De.

Proof We proceed per induction on Win (p, A, C) and perform a case distinction on the
proponent move. We assume (H)Vd € De.p EFd — (5-p) F aand p F A. We only
handle some of the cases.

PAa : Then there is some ¢ € A with a > ¢. We perform a case distinction on ¢.
@=1:Then L € Aandthusp | L.

¢ =Pt: Then p = Pt and per IH (Pt :: A) |5, \/ Dc. We may apply this, together
with (H) to deduce (5 - p) F a.

¢ = ¢ — ¥ : Then the IH upon the opponent countering together with Lemma 3]yields
(1) A |y {Da ¢} UDc and upon the opponent defending is (2) (¢ :: A) |, Dc. We
first assume (5 - p) | —a by Peirce’s law and then apply (2). This leaves us proving
p E ¢ which we can do by proving p = ¢ as ¢ — ¥ € A. We conclude this from
(1), H) and (5 - p) F —a.

@ =V : The IH yields (¢ ::TA) y., Drc for some s’ : S. We apply this to deduce
(s- p) F a using the fact that p |= V¢ and thus s”- p = (¢ =:TA). (H) can be adapted
tofCasp F¢y & s - p EN for all formulas .



PD ¢ : Then defending results in a state (p’, A’,C’) and the IH together with Lemma
yields A" |y {Da¢@} U Dcr. We further know that there is a ¢ € C and a defense
d € D. suchthat p Ed © p’ |E ¢. We may thus apply the TH to resolve the claim as
Dy ¢ does not “add anything” to D¢ and the validity of (H) is maintained under the
possible transformations applied to (p, A, C).

PM : Then PSt” holds and there is a ¢ € C with ¢ > Pf. Then we may apply (H) with
Py Pt € Dc to deduce (5 p) E a. -

Corollary 5 For any I and ¢, T EP ¢ entails T - ¢.

Proof AssumeI' EP ¢ and pick some classical, exploding model S, p and suppose p £ T
Per assumption Win (p, T, [], ¢) meaning (c =: T') |, V D, for all ¢ > ¢ by Theoremand
thus I' =, \/{Dag} by Lemma By picking ¢ as @ we then obtain p = ¢. -

We proceed by deriving a proper completeness result by relying on prior work by
Herbelin and Ilik [|6]. We take I" ¢ to be a classical natural deduction system.

Corollary 6 (Fragment Completeness) When restricting to the V,—, L-fragment,
T P ¢ entails T + .

Proof For this, first notice that the proof of Corollary [5|remains correct when the syntax
is restricted to the ¥, —, L-fragment, meaning T' £ ¢. Herbelin and Ilik have shown in [6]]
that this implies I" + ¢. -

We close this section by analyzing the relationship between Tarski validity in standard
classical models and classical dialogical validity. It is easy to see that dialogical validity is
subsumed by standard Tarski validity.

Corollary 7 Whenever T' P ¢ then also T 5 ¢.
Proof This follows from Corollary [5|by noting that every standard model is exploding. u

We now prove the converse direction to be unconstructive by proving it equivalent
to completeness of I' |5 ¢ which we have in turn proven unconstructive in [4]. We call
a theorem unconstructive if it can be shown to be equivalent to a proof principle inde-
pendent of the CIC. In this case, the equivalent unconstructive principle is the Markov’s
principle, the principle of double negation elimination restricted to the halting problem
for a Church-Turing notion of computation, such as the the untyped lambda calculus (more
details can be found in [4]).

Lemma 8 T ° ¢ entails T' P if and only if T' ° ¢ entails T + ¢.
Proof —: This follows directly from Corollary[13]

—: From T ° ¢ we know T ¢ which entails T' = ¢ via cut elimination and T P ¢ by
Theorem -

10



3.3. Dialogical cuts

We conclude our exploration of classical material dialogues by extending the completeness
result to the full syntax of first-order logic. For this, we prove the dialogical equivalent
of cut-elimination. We say a formula ¢ can be cut if for any p, A, A’,C we have that
Win (p, A +# ¢ = A’,C) and Win (p, A + A’, C, ¢) entails Win (p, A + A’, C). We prove full
cut elimination in two steps.

The proofs in this section heavily rely on the weakening principles Lemmas [1 and [9]
However, we feel that spelling out all applications of these principles obscures the simple
ideas behind this section’s proofs. We thus opt to leave applications of Lemmas [1] and [9]
implicit where possible. Readers interested in the proofs in full detail may take a look at
the Coq mechanization accompanying this report.

Lemma 9 (Weakening) Let Win (p, A,C) and A C A, C C C’ then Win (p, A’, C’).
Proof Simple induction on Win (p, A, C). -

Lemma 10 Pick a formula ¢ such that all formulas of smaller complexity can be cut. Now
pick some n and ¢ > (T" ¢) such that Win (p, A,C +¢ :: C’) and for all d € D, justified
under p we have Win (d°(p, A,C +C’)). Then Win (p, A, C #C’).

Proof We proceed per induction on Win (p, A, C +#c¢ :: C’). We first perform a case dis-

tinction on the proponent’s move in Win (p, A, C +c :: C’).

PA: The proponent uses a > / on some i/ € A. Then the proponent of Win (p, A,C #C’)
copies that move. There are two possible opponent responses.

« In the case of adma = "07, the opponent may counter with some ¢’ > 8c¢’. Then
the proponent copies the strategy obtained from the inductive hypothesis upon the
same counter.

+ The opponent may defend with some d € D,. Then the proponent copies the
strategy obtained for the inductive hypothesis upon the same defense.

PD: Then there isac’ € C +c :: C’ and the proponent defends with some d € D,. There
are two cases to distinguish:

¢’ € C4C’ : Then the proponent of Win (p, A,C +C’) copies the defense. If d is not
Dy Pt for some P, t, then the opponent attacks the formula i admitted by d with
some a > . The proponent then plays according to the strategy obtained from the
inductive hypothesis upon a > ..

¢’ = ¢ : Per assumption we have Win (d° (p, A, C +C”)). Then we perform a case dis-
tinction on the form of d.

d =Dy Pt: Then Win (d°(p, A, C #C’)) = Win (p, A, C #C’) and we are done.
d = D4y : The assumption thus is Win (p, ¢ :: A,C +C’). From the inductive
hypothesis we obtain Win (p, A,C +C’, ). As Day € D. and c > (T" ¢) we

11



know that ¢ is of lower complexity than ¢, meaning it can be cut and we thus
obtain Win (p, A,C +C’).

d = Dy ¢ s : This case is analogous to that for d = D4 ¢ with a few more applica-
tions of Lemmal[i] -

Theorem 11 (Dialogical Cut) All formulas can be cut.

Proof The proof proceeds per induction on formula complexity. Thus pick a ¢ such that
all formulas of lower complexity can be cut. We show that

Win (p,A+# " ¢ = A",C) - Win(p,A+A",C,1" ¢) — Win (p, A+ A’,C)

per induction on Win (p, A+ T" ¢ : A’, C) which subsumes the fact that ¢ can be cut. We
perform a case distinction on the proponent move.

PAa Then the proponent attacks some ¢y € A # T" ¢ :: A’ with a > (. We distinguish two
cases.

cEA+H : en the proponent o in(p, A#+A", copies that attack and proceeds
A4 A’ : Then the prop f Win (p, A+ A’, C) copies th k and p d
per inductive hypothesis.

¥ =T" ¢ : Then Win (p, A+ A’,C, 1" ¢) yields Win (p, A+ A’, a :: C) and the inductive
hypothesis means that for all d € D, we have that Win (d° (p, A +A’,C)). We
may thus apply Lemma[10]to deduce Win (p, A +A’,C).

PD iy : Then there is some ¢ € C and some d € D, such that d results in admitting . The
proponent of Win (p, A+ A’, C) thus copies that admission and proceeds per inductive
hypothesis.

PMP?t: Then Apt € C and P57’ holds. The proponent of Win (p, A 4 A’, C) can thus win
as well by demonstrating PS 1. .

Note that this cut-elimination principle would also allow us to prove soundness with re-
gards to classical natural deduction without much effort.

To extend the completeness result to the all connectives, we employ a DeMorgan trans-
lation, similar to our approach to the same problem for Tarski semantics in [5]]. In contrast
to that approach, the translation process will be fully constructive. We define the DeMor-
gan translation of a formula ¢® as follows:

D= (P5)P = P53 (p — lp)D = (pD — 1//D (p A 1//)D = —|(qu N _.¢D)

(p V)P = —~pP - yP (Vo)P = VoP (3p)? = ~(V-9P)

1
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Lemma 12 If Win (p, A, C, ¢) then Win (p, AP, C, ¢P).

Proof We proceed in two steps. We first show that Win (p, AP, C, ¢) and from this that

Win (p,AD, C, (pD).

1. We prove the generalization Win (p, A+ B, C, ¢) — Win (p, A+ BP, C, ¢) per induction
on B. The case of B = [] is trivial, thus suppose B = { :: B’. By Lemma[9| we know that
Win (p, A+ 1 = P 2 B’,C, ¢). It is well known that y” = ¢ and by 'Iheoremand
Lemma@thus Win (p, A+ P :: B’,C, /). We may thus apply Theoremto cut ¢ and
obtain Win (p, A4 ¢/ :: B/, C, ¢). We then continue per inductive hypothesis with the
choice A = A + [¢/P].

2. It is well known that ¢ = ¢P thus Win (p, ¢ :: AP,C, ¢P) and by Theorem 2 and
Lemma@ We may now apply Theorem [11| with Win (p, AP, C, ¢) to cut ¢ and obtain
Win (p, AP, C, ¢P) -

Corollary 13 (Completeness) For any I' and ¢, ' P ¢ entails T + ¢.

Proof By Lemma T EP ¢ entails TP [P ¢P. We may now apply CorollarylE]to obtain
T'P + P which can easily be shown to entail T + ¢ (for example, we do this in [5]). -

4. Intuitionistic Material Dialogues

Intuitionistic material dialogues differ from their classical counterparts by the restriction
that the proponent may only defend against the opponent’s most recent attack. This is
the dialogical analogue to the restriction to at most one left formula in the intuitionistic
sequent calculus. The proponent’s possible moves are thus as given below.

peEA ar g de D, pjustifiesd
PD
(p,A,C) ~p (p,AC);PAa (p, A c::C) ~op dr (p,A,c::C);moved

Intuitionistic material dialogues do not admit a constructive completeness proof. Indeed,
in a classical setting they are incomplete with regards to intuitionistic first-order logic. To
demonstrate this, we define a fragment of first-order logic as follows:

ab:A=z=_1L|PtlanblaVvb|Ia P:3t:T
oY :Fu=aloAyloVyla—y|VelIp

Unless specified otherwise, we are working in a standard structure S.

Lemma 14 Win (p, A, C) entails Win (5 - p, A’,T" C) wheres:S,|s|=nand " AC A’.

Proof Per induction on Win (p, A, C). -
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Lemma 15 For any a : A and any p, A,C with a € A one may assume p |= a to deduce
Win (p, A, C).

Proof Per induction on the structure of a. Suppose p = a entails Win (p,a :: A ,C) we
show Win (p, a :: A, C). We implicitly apply Lemma[14 where appropriate.

a =Pt : Then the proponent attacks P, forcing the opponent to admit p | Pt. The
proponent may then continue according to the assumption.

a = L : The proponent attacks L and wins.

a =a A b : The proponent starts by attacking a A b with Ay and A, leaving us to prove
that Win (p,a : b :: A,C). Applying the IH for a and b means we may assume p = a
and p [ b to prove Win (p,a = b :: A,C). As we thus know p | a A b the proponent
can proceed per assumption.

a=aV b: The proponent attacks a V b, leaving Win (p,c = a V¢ :: A,C) forc € a,b.
Applying the IH for ¢ allows us to assume p |= ¢, meaning the proponent can continue
per assumption in either case.

a = Ja : The proponent attacks Ja, leaving Win (s - p,a ::T(Ja :: A), TC). Per IH on a we
may assume s - p = a and continue per assumption. -

Note that A is the fragment of F which allows attacking “blindly”, meaning the same attack
pattern can be used on these formulas in every winning strategy. This fragment does not
include a — b as attacking it requires being able to defend a and Va as attacking it requires
a (finite) choice of s : 8.

Theorem 16 Pick ¢ : FP. then p E ¢ entails Win (p, A, C, ¢) for any A and C.

Proof Proof per induction on ¢.

¢ = a: We only handle ¢ = Pt and ¢ = L as the other cases are subsumed by other cases
of this proof. If p = L we are done. If p |= Pt then the only possible challenge is Ap t
to which the proponent can respond by admitting p | Pt.

@ =@ Ay : Then we know p = ¢ and p | ¢f. The possible challenges are Ay and Ag,
defending against which leaves Win (p, A, Ax :: C, 8) for some 8 € {¢, ¥/}. Either case
holds per IH for 6.

® =¢ V¢ : Then we know p | 0 for 0 € {¢,/}. The proponent thus defends against A,
by admitting 8 and proceeds per IH for 6.

@ =a — 1 : Then we know p |= a entails p | . In attacking, the opponent will admit a,
leaving Win (p, a :: A,A_, ay :: C). We apply Lemma [15] allowing us to assume p = a
to prove Win (p,a :: A,A_, ayy : C). The proponent thus defends by admitting ¢ and
proceeds per IH on ¢ as p = ¥ per assumption.
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@ = V¢ : We know thats - p |= ¢ for any s : S. The challenge will be A; ¢ for some s : S.
The proponent thus reacts by admitting ¢, proceeding per IH.

¢ =3¢ : Thens - p [ ¢ for some s : S. The only possible challenge is A5 ¢ to which the
proponent responds by admitting ¢ with s as the witness, proceeding per IH. -

Note that FP can be simplified, up to intuitionistic equivalence, by taking A to be only P
and L. We opted to demonstrate the result for the more complex fragment as it makes it
more apparent why we chose exactly this fragment (the “blind attack” justification). Note
also that we will not be able to extend the above result to all of F constructively as this
would subsume the translation we have show to be unconstructive in Lemma g
Importantly, Theorem[16|means that if the meta-logic is at least as strong as some non-
intuitionistic intermediate logics, their axiom schemata for formulas for a,b : A are valid
in intuitionistic dialogues. We list some examples below.
+ Classical logic C: a V —a
«  Godel-Dummett logic LC: (a — b) V (b — a)
« Logics of bounded cardinality BCp: \/ -, Nj<iaj = a;
« Logics of bounded width BW,,: VL, Az aj — a;
« Logics of bounded depth BD,: a,V(an, — (ap-1V(ay—1 = ...(a3V(az — (a;V-ay))))))
As these intermediate logics are consistent with the CIC, there is no hope of proving the
completeness of intuitionistic material dialogues with regards to some intuitionistic de-
duction system over the CIC without additional assumptions as this would contradict the
aforementioned consistencies. However, there might be such a proof under axioms guar-
anteeing the CIC to behave truly intuitionistically.
We can obtain an even stronger result: Under full classical logic, intuitionistic and
classical dialogical validity coincide.

Lemma 17 Under the law of the excluded middle, the following holds for any formula ¢
in any standard structure

1. Vp,A,C.pE—-¢ - ¢ € A— Win(p,AC)
2. Vp,A,C.p ¢ — Win(p, A C, ¢)

Proof We show both claims simultaneously per induction on ¢. For most cases, 2. works
the same as in Theorem[16in which case we omit them.

@ =Pt : 1. The proponent may force the opponent to demonstrate p |= Pt by attacking
Pt € A, contradicting p = —Pt.

¢ = L1 : 1. The proponent may win by attacking L € A.

p=9p—oy:
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1. Suppose p E —(¢p — ¥), meaning p E ¢ and p | —. The proponent then
attacks ¢ — ¢ € A. If the opponent counters the attack, the proponent can win by
playing the strategy obtained by IH2 on p |= ¢. If the opponent admits ¢/, then the
proponent plays according to IH1 on p = —).

2. Suppose p = ¢ — . The opponent attacks ¢ — ¥ with A_, ¢ ¢, admitting ¢. By
the law of the excluded middle, either p = ¢ or p E —¢. In the latter case, the
proponent can now proceed per IH2 on p [= —¢. In the former case we have p |= ¢
per assumption and the proponent can proceed by admitting ¢ and playing along

IH1lon p E ¢.

=@ Ay : 1. Suppose p | —(¢ A ), meaning p = —¢ or p = —¢. The proponent thus
attacks the side of the contradicted formula of ¢ A i/ € A and proceeds per IH1.

@=¢@Vy: 1 Suppose p = —(¢ V ¢¥), meaning p | —¢ and p | —y. By attacking
@ V ¥ € A, the proponent thus forces the opponent to admit either clause, thus
being able to proceed via TH1.

@ =V : If p E =Yg that means there is an s : S with s - p = —¢. The proponent thus
attack V¢ with Ag ¢ and proceeds per IH1.

@ = 3¢ : Suppose p | ~Jp, meaning s - p = —¢ for any s : S. Then the proponent attacks
J¢ € A and proceeds per IH1. -

Corollary 18 Under the law of the excluded middle, classical and intuitionistic dialogical
validity coincide.

Proof «: This is the case even without the law of excluded middle as every winning
strategy for an intuitionistic material dialogue is a winning strategy for the classical
material dialogues on the same state.

—: Suppose I' P ¢ classically. In Corollarywe have shown that this means ' £ ¢. As
every standard structure is exploding and under the LEM every structure is classical,
this means ¢ is valid under T in every standard structure. By Lemma [17| this means
that I' P ¢ intuitionistically. -

5. Kripke Material Dialogues

In the previous section we demonstrate that intuitionistic material dialogues fail at captur-
ing intuitionistic first-order logic. In this section, we give an alternative dialogical system
which succeeds in this. Classical material dialogues can be seen as classical dialogues
played on Tarski models, the canonical notion of model for classical first-order logic. In
that vein, we present intuitionistic dialogues played on Kripke models as a semantics for
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intuitionistic first-order logic. These stray far from the ideas of Lorenzen but are none the
less interesting in their own right.

A Kripke material dialogue is played on a Kripke structure K, <, 1. The game states of
Kripke material dialogues are dependent pairs (k, p, A,C) : Tk : K, N — S X L(F)X L(A)
which can be viewed as material dialogue states “at a world k in K”. To mirror the clauses of
I- for — and V, opponent attacks in Kripke dialogues can move the game state along < in K.
To express this we define a predicate alk +— k’ with where A_, ¢ |k — k" and As ¢k — k'
hold whenever k < k’ and alk — k holds for all other attacks a. The definitions of valid
moves and their effects on the game state are largely analogous to intuitionistic material
dialogues, this time also incorporating the movement along the Kripke frame. Note that
the definition of d” and d© are essentially the same as for the previous material dialogues,
leaving the world unchanged.

pEeEA avy
(k,p, A, C) ~, (k,p¥,A,C);PAa

PA

de D, pjustifiesd
(k,p,A,c:C) ~, at (k, 0, A c::C);moved

PD

c>@ clk— Kk’
(k, p, A, C);PD @ ~>4 (K, p¥ 0/ A : C)

OA

av¢ adma="yY7 ¢Yrc clk—k

(k,p,A,C);PAa ~, (K, pk’, c:Ac:0)

oC

de D, pijustifiesd
(k,p,A,C);PAa ~, d° (k,p, A C)

The definition of Win (k, p, A, C) essentially remains unchanged. We modify the defi-
nition of Win (k, p, A, C, ¢) to be that we have Win (k’, p,a :: A, c :: C) for any a > ¢ with
alk — k’ . We then define T' P ¢ the same as before.

5.1. Soundness

We first prove that Kripke material dialogues are sound with regards to the intuitionistic
sequent calculus L] given below. We again prefer using a sequent calculus as the deduction
system for the soundness proof as this means we do not need to prove Kripke dialogical
cut elimination first.
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e PteT LeT p—oyel I'=>¢9 LLy=946

LL——— L—
I = Pt =94 r=3:
Lo=vy oAy el T,o,y=6 I'=¢ I'=>4y¢y
—_— LA RA
I'=¢p—>Y I'=6 Ir'=90AY
pVYyel T,p=6 TLy=94 I'=¢ I'=>vy
Lv RVlI———M—— RVR—————
r=56 I'=9eVvy I'=evy
VopeT T,p[t]=>6 T=9 dpelT TLe=1
LV RV —«— L3
r=:4 I'= Ve =394
I'= o[t]
RI—————
I'= 3¢

Note that this proof of soundness requires the congruence machinery we describe in
Appendix [A]as captured by Lemma

Lemma 19 Suppose Win (k, p, A,C) and p,A =¢ p’,A’, p,C =, p’,C’ for some rho’, A’
and C’. Then Win (k, p’, A’, C’).

Theorem 20 Suppose I’ = § then T P 6.

Proof For this, we prove I' = § — Vk, p, C. Win (k, p, T, §) per induction on T = §. We
again only handle a few exemplary cases.

Ax: The only possible challenge is Ap t. Then the proponent attacks the Pt € T, forcing
the opponent to demonstrate P¥ . Then the proponent can defend against Apt by
demonstrating the same fact, thereby winning the dialogue.

L1: The proponent attacks L € T, leaving the opponent without any possible response
and thus winning the dialogue.

L—: The proponent thus attacks ¢ — ¢/ € I'. If the opponent counters, the proponent
plays according to the IH on I' = ¢. If the opponent defends, the proponent plays
according to the IHon I, y = 4.

R—: Then the challenge is A_, ¢ /, leaving us to prove Win (k/, p, ¢ : T, A ¢ ¢ :: C) for
some k < k. As ¢ :: ¢ =: T C ¢ = T, the proponent may defend and continue playing
according to the weakened inductive hypothesis.

LV: The proponent attacks V¢ € T choosing t” : Sj as the witness. One the opponent
defends, the game state is Win (k, t - p, ¢ =T, 1(c =: C)). By applying Theorem [20] the
proponent may continue to play according to the IH as p, ¢[t] = T =¢ t¥ - p, ¢ =T and
p,cC=gtP-p, (e C).
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RV: Then the challenge is A ¢ for some s : Sy and A ¢|k — k’. The proponent can then
defend and continue playing according to the IH on TT" = ¢. -

5.2. Completeness

We show completeness the same way we do in Section [3.2] We first prove that Kripke dia-
logical validity entails exploding Kripke validity. We then use a prior result from Herbelin
and Lee [7]] to deduce completeness for the V, —, L-fragment.

We extend the forcing relation to defenses as follows

PKEDag & pF o PKFDywoses-prire ok F Dy Pt & pF i PE
and define an auxiliary predicate on contexts I', k-environments p and challenges ¢
T \/Z)C eVk<k ap¥rT > NdeDe.p¥ rd—pFira)— pFra

Intuitively, I' ka, V D, states that I' semantically entails the disjunction of the semantic
interpretations of defenses against ¢ under the k-environment p.

Lemma 21 If for some ¢ we have (¢ :: T') Il—ﬁ \/ D, for all ¢ ¢ then p¥ I T entails p* I ¢.

Proof Assume (1) Ve > ¢. (¢ = T) Il—f, \/ D, and p* I T We proceed per case distinction
on ¢.

@ = L : As there are no defenses against A, , choosing L for « in (1) already yields p* I L.
¢ =Pt: Weapply (1) to Ap t.

@=¢ — : Letk < k’ and suppose p¥ I ¢. As this means p¥" I ¢ :: T, we may apply
(1) with A, @ .

@ =@ Ay : Then we can apply (1) with A ¢ and A/ to obtain p* I ¢ and p* * ¢,
yielding p* I ¢ A ¢ overall.

@ = @ V1§ : Then we apply (1) with A, ¢ . This leaves us proving that p* I ¢ and p* I ¢
each entail p¥ I ¢ Vv 1/ which is clear.

@=Vo: Letk <k’ and s : S, we need to prove that s - p¥ I ¢. For this, we apply (1)
with A ¢.

@ = 3¢ : For this we apply (1) with A5 ¢. This leaves us proving that for s : Sy, s - p¥ I ¢
entails p* I 3¢ which is clear. -

Theorem 22 Let K, <, be exploding. Suppose Win (k, p,T,c :: C) then T IF’; \ D..
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Proof We proceed per induction on Win (k, p,T, ¢ :: C). Suppose k < k” and p¥ I T.
Now suppose that pK I d entails p* I a for all d € D,.

PA : The proponent attacks some ¢ € I'. We perform a case distinction on T
@ = L : Then p¥ k L per assumption and thus p¥" I « as the structure is exploding.

@ = Pt : Then we may apply the IH for the opponent defending by demonstrating

pK" I P which holds per assumption.

@ =@ — 1 : We first apply Lemma [21| to the IH upon the opponent countering to
obtain p¥" I ¢. We can then apply the IH obtained upon the opponent admitting
as pk’ ¢ ::T.

@ = ¢ Ay : Toapply the IH we have to demonstrate p¥ I ¢ or p* I i/, either of which
hold as p* I ¢ A .

¢ = ¢ V1 : Then either p¥ I ¢ or p¥ I /. In either case, we can apply the IH upon
the opponent admitting the respective formula.

@ =VY¢ : The proponent chooses some s : S. As pk’ I Yo we have s - pk/ - ¢. By
applying the IH upon the opponent admitting this, we can then obtain s - p¥ a
meaning pk' - a.

@ = ¢ vV : Then either p¥ I ¢ or p¥ I 1. In either case, we can apply the IH upon
the opponent admitting the respective formula. with s - p¥" I ¢. The proof then
proceeds analogously to the case of ¢ = V.

PD : The proponent thus defends against ¢ via some d € D.. We thus show p¥ I a by
showing p* I d. If d = Py Pt that means the proponent demonstrated p* I Pt which
is transported to p¥’ I P via 1, meaning p¥ I d. In the other two cases, we may apply
Lemmato the IH to obtain p¥ I d. "

Corollary 23 Whenever I' P ¢ then also T' X ¢.

Corollary 24 (Fragment Kripke completeness) When restricting to the V,—, L-
fragment, I' P ¢ entails T = ¢.

Proof By Corollary [23 we know I' X ¢. In [7] Herbelin and Lee prove this entails
I'=o. L]

We can also demonstrate the same relationship between Kripke material dialogues and
standard Kripke validity.
Corollary 25 When restricting to the ¥, —, L-fragment T' P ¢ entailing T EXS ¢ for all

I' and ¢ is equivalent to the Markov’s principle.

Proof As T P ¢ iff T X ¢ by the previous results, T P ¢ entailing T XS ¢ is
equivalentto ' EX ¢ entailing T' EXS ¢, which we have proven equivalent to the Markov’s
principle in [4]]. -
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6. Discussion

Mechanization of active research In the course of this project, we mecha-
nized all results from Section [3| safe for some of the corollaries, in the interactive theo-
rem prover Coq. Mechanizing already established results in Coq is a worthy endeavor in
its own right, for example yielding some insight into their computational contents when
working without additional non-constructive axioms. However, we want to discuss using
Coq to mechanize new results while working on them as we did here. Mechanizing the
results of Section[3]revealed some mistakes in our initial definition of the rules for material
dialogues which, albeit minor, broke both soundness and completeness. We missed these
mistakes while working out the proofs on paper and believe they would have made it into
the final report, were it not for the mechanization. Having battle tested our definitions in
Section [3|gave us sufficient confidence to work on paper for the remainder of the project.
It should also be noted that the mechanization took up only about a quarter of the overall
time spent on the project, thanks in part due to building on top of the a large preexisting
mechanization from [5]. We feel this might be a worthwhile trade off between the time
requirement of a full mechanization of all results and the room for error in working solely
on paper.

Proof strategies for completeness In this project, we prove completeness by
transforming dialogical validity into validity in some model-based semantics and then us-
ing preexisting completeness proofs for those. The general reasoning was that this is the
quickest way to obtain these completeness theorems in the framework set up by [5]. For
classical material dialogues, we believe it would also be possible to obtain a direct con-
structive completeness proof with regards to natural deduction on the basis of a Henkin
construction, although it would likely require the dialogical cut. For Kripke material
dialogues, we believe we could obtain a direct constructive completeness proof for the
V, —, L-fragment via a normalization-by-evaluation approach, similar to that in [7]]. How-
ever, we regard Kripke material validity entailing exploding Kripke validity on the full
syntax as a stronger result because of its broader scope, which is why we opted for the
proof strategy exhibited in this report.

Classical Kripke Dialogues The analysis of Kripke dialogues for intuitionistic
first-order logic naturally brings up the question of how Kripke dialogues with a classical
rule set would behave. While we chose not to pursue this question further out of time
restrictions, we hold the strong belief that Kripke dialogues with classical rules should
behave the same as material dialogues with classical rules. Their validity should entail
classical exploding Tarski validity, as every classical exploding Tarski structure can also be
viewed as an equivalent one-world Kripke structure. The more critical property is sound-
ness: We believe that the “independence of the classicality of the structure” already demon-
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strated by the soundness proof for classical material dialogues should extend to even work
on Kripke structures. We have, however, not checked this formally.

Benefits of Material Dialogues Another question naturally raised by this
project is how material and Kripke dialogues compare to other semantics for first-order

logic, especially in a constructive setting. As demonstrated in Section[3] classical material
dialogues are independent of the underlying structure’s classicality. This might ease work
in model theory in a constructive setting. For Kripke material dialogues, there seems no
apparent benefit over simply working with Kripke structures.
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A. Dialogue congruences

Given p, p” and ¢, ¢’, we define an equivalence relation p, ¢ =¢ p’, ¢’ as below. Intuitively,
p,¢ =¢ p’,¢’ means that ¢ and ¢” are equal up to their terms and the pairs of terms
at a certain position within these formulas are equal under evaluation in the respective
environment.

7 =7 po=rp e pyY=pp Y
pL=ppL p,Pt=sp', Pt pseay =¢ p’, 'Oy’

vd. (d-p).,o=f(d-p').¢
p,0¢ =¢ p’,0¢’

We then extend this congruence to attacks p,a =, p’, a’, defenses p,d =4 p’,d’.

P =" p@=rpe
p,AL=ap AL p,Apt =4 p Apt/ p, ALY =q p', AL @’
pV=fp Y po=rp o pyY=rp Y
psARY =a p', ARY’ pAv @Y =ap Av 'Y’
po=fpe py=rplY (s pho=f(s-p)e
pAS QY =ap Al @'Y pAs @ =Za pi As ¢’

Vd. (d-p).o=r(d-p)¢
pAsQ =4 p" A3¢’

P -7 po=fpe (s-pho=f(s-p)e
p, Dy Pt=4p Dy Pt p:Da@ =a p'.Dag’ p:Dw ¢s=ap’.Dwo’s
We extend all of the above to lists with

p.a=xpa p A= p A
p. [l =xp'. (] p,(a::A) =, p’,(a =AY

Lastly we define a congruence between substitutions p, o = p’, ¢’ which holds if for all
variables x we have that (o x)? = (¢’ x)?". We now state all of the properties required of
the relations to show Lemmal 1} All of them have been proven in the Coq mechanization

accompanying this report.

23



Fact 26

p,¢ =¢ p’, ¢’ is an equivalence relation

D, 0 =4 p’, ¢’ is an equivalence relation

0, ¢ =4 p’, ¢’ is an equivalence relation

p,¢ =5 p’, ¢’ and a > ¢ mean there is a a’ > ¢’ with p,a =, p’, @’

If p,a=, p’,a’ thenifadma = "¢ then adma’ = "¢ such that p, ¢ =¢ p’, ¢’
p,a=, p',a’ andd € D, mean thereisad’ € Dy with p,d =4 p’, d’
If p,d =4 p’,d’ and p justifies d then p’ justifies d’

Ifp,a=,p’.a’ and p,A = p’, A’ then p, (a :: A) =¢ p’, (a" = A")
p;0 =s p’,0’ means p,¢[o] =¢ p’, p[0’]

10. p,0 = p’, 0’ means p,alo] =, p’,alo’]

A S A

24



	Overview
	Preliminaries
	Classical Material Dialogues
	Soundness
	Completeness
	Dialogical cuts

	Intuitionistic Material Dialogues
	Kripke Material Dialogues
	Soundness
	Completeness

	Discussion
	Dialogue congruences

